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We show that the statistics of a turbulent passive scalar at scales larger than the pumping may exhibit
multiscaling due to a weaker mechanism than the presence of statistical conservation laws. We develop a
general formalism to give explicit predictions for the large scale scaling exponents in the case of the Kraichnan
model and discuss their geometric origin at small and large scale.
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Turbulent transport poses challenges for fundamental re-
search with important implications for many environmental
�e.g., impact of natural and anthropogenic pollutants on cli-
mate� and industrial �e.g., design of effective mixers of
chemical products� applications. During the last fifteen years,
the field has seen major developments �1�. The study of an
analytical tractable model, the Kraichnan model of passive
advection �2,3�, permitted �4,5� to prove that the statistics of
a turbulent passive field �e.g., the temperature� is intrinsi-
cally not self-similar in the inertial range �fine scales of fluid
motion not affected by thermal dissipation�. More impor-
tantly, drawing on concepts and methods from stochastic
analysis �6,7� pointed out a general mechanism accounting
for the experimentally and numerically observed multiscal-
ing �see, e.g., �8,9�� of inertial range statistical indicators.
Accordingly, the statistics of equal time correlation functions
is dominated by global statistical invariants of the Lagrang-
ian dynamics �6,10�. Although this picture can be established
in a mathematically controlled way only for the Kraichnan
model, numerical investigations of passive scalar advected
by the Navier-Stokes equations �11� together with experi-
ments �9,12� give strong evidences of the generality of the
mechanism. In the unfolding of these developments, thor-
oughly summarized in �10�, much attention has been devoted
to the turbulent inertial range. However, in many physical
contexts �e.g., the study of the large scale structures in cos-
mology �13�� it is important to understand the defining prop-
erties of statistical indicators of fluid tracers at scales larger
than the typical energy source. As the energy of tracers trans-
ported by an incompressible velocity field is expected to
“cascade” toward finer scale, one might be tempted to infer
from the absence of a “constant-flux” solution of the type
predicted by Komogorov’s 1941 theory �14� the onset of a
thermodynamical equilibrium with Gaussian statistics and
equipartition of scalar variance. However it was recently
shown analytically �15� and numerically �16� that the pres-
ence of an equipartitionlike scalar power spectrum may well
coexist with higher-order correlation functions exhibiting
breakdown of self-similarity and multiscaling. Underlying
these results is the existence, predicted in �6� for the Kraich-
nan model, of an asymptotic zero-mode expansion of corre-
lation functions also at scales larger than the pumping. Here,
we device a formalism to calculate �perturbatively� the scal-
ing dimensions of the large scale zero modes. We show that

large scale zero modes are not global statistical conservation
laws of the Lagrangian dynamics. They share however with
inertial zero modes a geometrical origin indicated by their
being in first approximation specified by eigenvalues of qua-
dratic Casimir’s of classical groups. Finally we provide nu-
merical evidence of large scale zero-mode dominance and
discuss the relevance of these results for advection by
Navier-Stokes. The passive advection of a scalar quantity by
a Newtonian incompressible fluid is governed by the equa-
tion

�t� + v · �� −
�

2
�2� = f , �1�

where v is a vector field solving the Navier-Stokes equation
and f is a stochastic large scale stirring. Following Kraichnan
�2,3� we model turbulent fluctuations of v by a Gaussian
statistics with zero average and

�v��x,t�v��y,s� � = ��t − s�D���
���x − y,m� , �2�

where the spatial part of the velocity correlation is scale in-
variant up to an inverse integral scale m−1. Such behavior is
encoded in the Mellin representation �17�

D̃���
���x;m,z� ª �

0

� dw

w

D���
���wx;m�

wz =

−
D0�mz−�C̄�z,��

z − �
� ddq

�2��d

eıq·x

qd+z 	���q̂� ,

�3�

where 	�� denotes the Fourier space transversal projector. If
D���

�� decays faster than power law for mx
1 as we suppose

here, C̄�z ,�� is a meromorphic function analytic for Re z
� �−� ,0� and analytic nonvanishing for �� �0,2�. The resi-
dues of the simple poles for Re z=0 and � yield the inertial
range asymptotics �17�. For the statistics of the forcing field
f we hypothesize time decorrelation �to preserve Galilean
invariance�, parity, and translational invariance and correla-
tion functions with support peaked around an integral scale
m̄−1�m−1. Mathematically, Eq. �1� is a stochastic partial dif-
ferential in Stratonovich sense �18� in order to preserve the
hydrodynamic interpretation. A straightforward application
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of the Ito lemma �see, e.g., �10,17�� yields the Hopf equa-
tions satisfied by the scalar correlation function Cn of n
fields:

��t −
1

2�
i�j

n

D���
���xij;m��xi

��xj
� −

��,m
���

2
n�Cn = Fn �4�

with n as the Laplacian in Rnd, xijªxi−x j, Einstein con-
vention on contracted indices and Fn as an effective forcing
depending at most on Cn−2. The eddy diffusivity ��,m

���
ª�

+D����

� �0;m� /d has a finite inviscid limit �0,m
��� for all �

� �0,2�. Translational invariance reduces the left-hand side
of Eq. �4� to ��t−Mn

����Cn, with Mn
��� as a degenerate elliptic

operator �for vanishing � and generic �� in dnª �n−1�d spa-
tial dimensions �6�. The null space of Mn

��� can be thought as
consisting of local martingales of an effective purely multi-
plicative stochastic process for each value of n. The rel-
evance of these quantities for the unique solution �19� in
L2�Rdn� of Eq. �4� is discussed in details in �6,10�. The limit
�↓0 illustrates the situation. In such a limit �5� D�0�

�� vanishes
for every finite point separation while still contributing to a
scale-independent inviscid eddy diffusivity �=�0,m

�0� . Param-
etrizing Rdn with Jacobi variables �see, e.g., �20�� R
= �r1 , . . . ,rn−1�, W= �w1 , . . . ,wn−1�, the reduction in the free
Green’s function to the translational invariant sector reads as
�21�

Mn
�0�−1

�R − W� = �
J=0

�

�
L

2KJL�R�HJL
† �W�

��dn + 2J − 2�
�5�

for Rª 	R	�Wª 	W	. The HJLs are harmonic polynomials
providing a complete orthonormal basis of SO�dn� through

the relation HJL�R�=RJYJL�R̂� �here RªRR̂� with hyper-
spherical harmonics labeled by dn−1 integers �J ,L� �see,
e.g., �20��. The KJLs are decaying harmonic functions in a
one-to-one correspondence with the HJLs specified by the
so-called Kelvin transform �22�,

KJL�R� = R2−dnHJL�R/R2� . �6�

The SO�dn� decomposition of the Mellin transform of Fn

F̃n�R, z̄� = m̄−�F�
JL

�m̄R�z̄YJL�R̂�FJL�z̄� �7�

for �F the canonical dimension of Fn allows us to couch the
steady-state solution of Eq. �4� for vanishing � as

C̃n
�0��R, z̄� = �

JL

2m̄−�FR2�m̄R�z̄FJL�z̄�YJL�R̂�

��dn + J + z̄��J − 2 − z̄�
. �8�

Equations �7� and �8� can be thought as functionals of iden-
tical Lagrangian particles in the unique steady state. Thus
there and in the following, for each J�N the sum over L is
restricted to fully symmetric states. To each hyperangular
sector is associated a strip of analyticity, determined by the
convergence of the Mellin integral, of size −dn−J�Re z̄
�J−2. The simple poles marking the boundary of the strip
determine the noncanonical scaling dimensions of the large
KJL and small scale HJL zero modes. Thus, expansion �8�
evinces the geometrical origin, SO�dn� anisotropy, of nondi-

mensional scaling. Both classes of zero modes are local mar-
tingales as they belong to the null space of n−1. However
only the HJL are strict martingales, i.e., are preserved by the
propagator Ptªexp�tn−1� of the diffusion: HJL= Pt�HJL. A
direct calculation shows that projecting first Pt onto its �J ,L�
component renders the convolution Pt�KJL integrable but
restricts the region where the martingale property is satisfied
to a domain R2
�t monotonically decreasing in time. The
KJL are therefore strictly local martingales �23�. The pertur-
bative construction below in the text suggests that large scale
zero modes are not expected in general to be statistical con-
servation laws of the dynamics. At small but finite � the
SO�dn� symmetry is broken to �n�SO�d�, with �n as the
permutation group of n particles. As first shown in �5� solu-
tions of Eq. �4� can be constructed in a systematic perturba-
tion theory in �. Combining Eq. �5� with Eq. �7� yields for
the JL component of Cn=Cn

�0�+�Cn
�1�+O��2� in the steady

state

Cn,JL
�1� �R,z, z̄� = −

Cn,JL
�0� �R, z̄�ln m

z

−
2z/2n�n − 1�R2�mR�z�m̄R�z̄C�z�
z2�dn + J + z + z̄��J − 2 − z − z̄�

� �
a=1

2 � d�dn
YJL

† �Ŵ�JaaDaCn
�0��W, z̄�
W=1

m̄=1
,

�9�

with Daªw1
z����−z / �d−1+z�w1

�w1
� /w1

2��wa
��wa

� and C�z�
such that C�0�=1. In deriving Eq. �9� we adopted an ortho-
normal set of Jacobi variables such that r1ªx12 and r2
ª ��n−2��x1+x2�−2� j=3

n x j� /2�n−2�n. In such a case the
Jacobian of the change in variables give only two nonvan-
ishing contributions �J11,J22� equal to � 1

2 , n−2
2n �. The order of

evaluation of the residues in the Mellin variables z , z̄ deter-
mines the order of the limits of vanishing m and m̄. The
condition m� m̄ is enforced evaluating first the residue for z
equal zero. Corrections to scaling are then associated to
double poles in z̄ occurring only for z̄J,+=J−2 �inertial
range� and z̄J,−=−dn−J �large scales�. Thus it is sufficient to
diagonalize Eq. �9� in the SO�dn� representation specified by
J. Universal terms in the two asymptotics, labeled by
i= �+,−�, are encoded into finite dimensional matrices Ii de-
pending upon the asymptotics and the SO�dn� representation:

Cn;JL
�1� �R,i� →

2m̄−�FR2+z̄J,i

��dn + 2J − 2��FJL�z̄J,i�ln
m̄
2

− �− 1�iln�m̄R��
L�

�J,L
Ii
J,L��FJL��z̄J,i�� + ¯ .

�10�

The “¯” stand for nonlogarithmic corrections. Scaling ex-
ponents are determined by the eigenvalues �z̄J,i

�1� of Ii accord-
ing to �z̄J,i

=2+ z̄J,i+��z̄J,i

�1� +O��2�. It is expedient to choose a
representation of hyperspherical harmonics adapted to the
group-subgroup chain adapted to SO�dn��SO�d�n−1 �see,
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e.g., �20,21��. If we focus on the SO�d�-isotropic sector of C4
as in �5� for permutation invariant states the representation is
two dimensional and all calculations can be performed ex-
plicitly �24�. The inertial range asymptotics recovers the re-
sults

�4,+
�1� ��4,0�� = −

2�d + 4�
d + 2

, �4,+
�1� ��4,2�� = −

2�d − 2�
d − 1

,

�11�

respectively, corresponding to the irreducible and reducible
zero modes �5�. The large scale asymptotics yields

�4,−
�1� ��4,0�� =

d + 6

d + 2
, �4,−

�1� ��4,2�� =
d − 3

d − 1
. �12�

In order to interpret the results and justify the notation, we
rewrite the scalar products on the dn hypersphere in Eq. �9�
in terms of the Gaussian measure of Rdn so that for any �
�0

�J,L
I−
J,L�� = �
a=1

2
2n�n − 1�Jaa

dn + 2J − 2
� d

dz
� z=0

z̄=−dn−J

�� ddnW
e−W2/2Ro

2
W�HJL

† �W�DaW2+z̄YJL��Ŵ�

�2Ro
2��z+z̄+J+��/2�� z + z̄ + J + �

2
�

�13�

so that we can integrate by parts in the Cartesian coordinates.
By incompressibility of Eq. �2� the operation reduces to let-
ting Da act to its left in Eq. �13�. Projecting back to the
SO�dn� scalar product and taking the limit of vanishing �
yield the relation �J ,L
I−
J ,L��= �J ,L�
I+−1
J ,L� implying
�z̄J,−

�1� =−�z̄J,+

�1� −1 satisfied by Eqs. �11� and �12� so that �z̄J,−

+�z̄J,+
=2−dn−�+O��2� which is consistent with the nonper-

turbative analysis of �6�. In the literature �see, e.g., �25,26��
the �z̄J,+

s have been computed in general for irreducible zero
modes �5,10� as they are the only to contribute to structure
functions. Here we outline a different approach based on the

martingale property of the HJLs and conceptually “dual” to
the Wilsonian renormalization of composite operators of
�17�. Instead of studying operators of the renormalized
theory with larger infrared cutoff, we study martingales of
the original theory in the limit of infinite integral scale. To
this goal we introduce the infrared regularized harmonic
polynomials HJL

�L��R�ªHJL�R�exp�−R2 / �2L2��. These are
eigenstates of the isotropic harmonic oscillator in Rdn and,
consequently, eigenstates of the Fourier transform �27�. Us-
ing this property and the diagrammatic techniques of �17� it
is straightforward to evaluate the convolutions

lim
L↑�

Mn
�0�−1

�
HJL

�L�

L2 =
2HJL

��dn + 2J − 2�
�14�

and for J�0

lim
L↑�

Mn
�1�−1

�z� �
HJL

�L�

L2 = −
2HJLln m

z��dn + 2J − 2�
− �

l�k
�
a,b

n−1

Ja1
�lk�Jb1

�lk�
�ra;�lk�

� �rb;�lk��HJL�R�lk��

z��dn + 2J − 2�
�

dC̄�z,0�mz

�d − 1� � ddq

�2��d

22+�z/2�eıq·r1;�lk�	���q̂�

C̄�0,0�qd+z+2
,

�15�

where J�lk� is the Jacobian of orthonormal Jacobi coordinates adapted to r1;�lk�=xlk /2. The integral in Eq. �15� yields the first
term of the loop expansion to which the perturbative theory for the Cns reduces if the limit m̄↓0 is taken first. The integral may

seem to require analyticity of C̄�z ,0� in the strip Re z� �−2,0�. However the residue for Re z=−2 is proportional to n−1HJL
and vanishes. The scaling dimensions of the inertial range zero modes are determined by prefactor of the self-similarity
breaking term ln m. After some algebra we get into

Resz=0�lim
L↑�

Mn
�1�−1

�z� �
HJL

�L�

L2 � =
2ln m

��dn + 2J − 2�
�1 +

�d + 1�CSO�d�
�2,n� − dCSU�d�

�2,n�

2�d − 1��d + 2�
�HJL + ¯ , �16�
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FIG. 1. Numerical large scale behavior of S4��r , m̄�ªS4�r , m̄�
−C4�0, m̄� �four-point structure function minus four-point correla-
tion at coinciding points� versus the integral scale m̄−1 balanced by
the theoretical zero-mode prediction m̄�4,−��4,0��, with �4,−��4,0��
=2−�−�4,−��4,0��. The plot is obtained by averaging over N=109

Lagrangian paths using the algorithm of �29,30� at �=0.4, r=1, and
d=3. By Eq. �12� �4,−��4,0��=11.88+O��2�. Forcing is non-
Gaussian and proportional to the hyperspherical harmonic Y4,L�

specifying the zeroth order of the irreducible inertial range zero
mode �see �5� for details�. The observed behavior significantly de-
viates from the scaling prediction coming from the exponent 2
−d4−� of the Green’s function.

SCALING AND STATISTICAL GEOMETRY IN PASSIVE… PHYSICAL REVIEW E 80, 025301�R� �2009�

RAPID COMMUNICATIONS

025301-3



with CSU�d�
�2,n� =CSU�n−1�

�2,n� + �d+1−n�
d�n−1� E�E+dn�, E as the generator of

dilations and CSO�d�
�2,n� and CSU�n−1�

�2,n� as the mutually commuting
quadratic Casimir invariants of SO�d� and SU�n−1� acting
on translation and permutation invariant homogeneous poly-
nomials of n particle variables in d dimensions. Although
�n ,CSU�n−1�

�2,n� ��0, any homogeneous polynomial P of degree
J admits a unique expansion PJ=�k=0

k� R2kHJ−2k, k�=int�J /2�
for the HJs harmonic homogeneous polynomials of degree J
�22�. Thus linear combinations of the HJLs specify eigen-
states of the Casimir invariants up to slow modes of the free
theory �6�. By Gel’fand-Zetlin theory �see, e.g., �28�� the
eigenvalues are �SO�d��j�= j�j+d−2� and �SU�n−1��a�
=�i=1

n−2ai�ai−2i�+ J��n−1�n−J�
n−1 for j, a= �a1 , . . . ,an−2� non-

negative integers satisfying �i=1
n−2ai=J and ai�aj for any i

� j so that

�z̄J,+

�1� �j,a� =
�d + 1�j�j + d − 2�

2�d − 1��d + 2�

−
d�i=1

n−2ai�ai − 2i� + J�d�d + 1� − J�
2�d − 1��d + 2�

. �17�

Irreducible zero modes correspond to a= �n ,0 , . . . ,0� �J=n

and n−3 zeroes�, while the four point reducible zero mode
correspond to a= �2,2�. For C2 �15,16� the value of the forc-
ing spectrum at zero momentum determines whether the de-
cay at scales larger than the pumping is power law or expo-
nential, in the latter case paving the way for anisotropic
scaling dominance. Figure 1 illustrates realizability of large
scale anomalous scaling for C4 and non-Gaussian forcing.

These results give an analytical though perturbative vali-
dation of the general link between geometry and intermit-
tency in passive scalar turbulence numerically established in
�11�. Furthermore, in the inertial range the above analysis
carries over to a passive scalar advected by the Navier-
Stokes equation in the thermal stirring regime forced by a
Gaussian random field self-similar with Hölder exponent �.
As shown in �31�, at leading order in a loop expansion in �
the scalar is driven only by the Gaussian core of the velocity
statistics described by a Kraichnan model with ���.
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